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A solution is presented for the coupled and uncoupled modes and
frequencies of wings (swept or u&wept) mounted on a fuselage. The
deflection and twist of the wing is eqanded in terms of the modes of a
unifozm cantilever beam and the ener~ method is used to derive the
characteristic equations “describingsymmetrical emd antisymnetrical
modes of vibrations. Application of these equations to various types of
w5nR vibm.tion is illustrated by numerical examples● The numerical.
e=les chosen were susceptibfi to exact solutkj
that accurate nmdes and frequencies can be obtained
low-order W5e?mdnents are used.

and the results show
by a method in which

llTI!RODTEPIOI?

Ezcept for certain idea13zed cases, the natural vibration modes and
frequencies of airpbne w3ngs (swept or unswept) caunot be found by
exact analysis, and thus approximate methods of solution must le used.
Such a solution is presented for the general problem of coupled bending
and torsional vibration of a nonuniform wing mounted at an angle of
sweep on a fuselage. The energy method is used to derive two sets of
Hnear characteristic equations, one for symmetrical modes and the other
for antisymmetricalmodes. These same equations ak30 lead to solutions
for the couyled and uncou@ed nmdes and frequencies of the unswept whg
and fusekge. The equations exw solved by the Crout method which per-
mits indepmient calctition of any desired mode and frequency.

b this solution the deflection and twist of the wings sre assumed
to conform to elementary beam theory. Such en assumption may or may not
lead to en analysis which is applicable to wings having low aspect
ratio, especially when appreciable sweep is present, because the effects
of the distortions in the vicinity of the root of the wings sre not
fuJJY understood. The present amalysis considers the fuselage to be a
rigid body, but the analysis may be extended to treat an elastic
fuselage.

. . .—-. ——-.. . ..— —--- ---- -. .. —.. —- --. —.— ... . . .--- .--.—. - .- - .— --.—— .—. -



NACA ~ No. 1747

The important feature of the method presented herein is the simpli-
fication that ~sults from use of the natural.modes of a unifomn canti-
lever beam as extensions for the defL3ction and twist of the vibrating
nonunifomn free-free w5ng. With the addition of appzmpriate rigid-body-
displacement terms, these expressions may _bemade to satisfy all.the
geometrical boundary conditions for both symmetrical and antisymmetrical
wing vibration. Anal-Yz@ idealized structures for which exact solutions
could be made shows that only a few temns are needed in the eqansions
toobtain good accuracy. -
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SYMBOLS

along elastic

elasticity

modulus of eksticity in shear

axis

bend@ moment of tiertia of wtng cross section
to ektic axis

polar moment of inertia of mass per unit length
ekstic -S

perpendicular

of wing a%out

tom3ion constant for cross section perpendicular to elastic
axis of TKhlg

one-half of pitchhg polar moment of hertia of fuselage mass
about elaatic exis of wing at root

one-half of rolling polar moment of inertia of fuselqe Mss
about fuselage longitudinal axis

distance along elastic axis of wing, measured from center
We of fuselage or root of wing

deflection of elastic axis of w5ng with respect to its static
equilibrium position; positive upward

singleof twist of whg cro3s section with reference to.Its
static equilibrium position; positive ti stalling direction

angle of pitch of fuselage

mgie of roll of fusebge

angle of sweep, measured between wing ekstic axis and line
pe~endicular to fuselage longitudinal axis
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n

mass of wing per unit

total mass of wing

length

me-half of mass of fuselage

mtio of fuselage mass to wing

circular freqlency of
second

circular freqlemy of
cantil.8verbeam

circular freqllmcy of
cantilever beam

natuml mode of vibration, radians ger

nth natural ‘bendingmde of uniform

nth natuml tomional mode of uniform

trequency of natural.Dde of vibratim, cycles per second

d.istsncebetwe~ mass center of w5ng cross section or yoints
of mass concentmtion and elastic axis of wing; positive
when mass center Ues fom of elastic @s–”

Yn“(x)

q.Jx)

qn ‘ (x)

distance between mass center,of fuselage and elastic axis of
wing at root; positive when mass ceriterHes forward of
elastic axis

distsnce between point of spr~ suspension and elastic axis
of wing at -tj positive when point of suspe.mien lies
fom of elastic axis

ela8tic sprhg canstant
.

coefficient of nth term in expansion for y

coefficient of mth tem in expsnsion for q

integers (1, 2, 3, . ..)

nth bending mode of uniform cmtilever beam

seccnd der?Yative tith respect to x of yn(x)

nth torsional mode of uniform cantilever beem

first derivative with respect to x of Tn(x)
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ENERGY 3D2RESSIONSm DEFLECTION FUNCTIONS .

In an analysis to detemine the modes of vibration of wings it is
UEWIJY sufficient to consider the equil-ilriumof one-half the fuselage
and the wing semispan *O The airylane is divided along its longi-

tudinalsxis with a coordbate system a8siqed as shown in the follo~
confi~ati on:

Elastic
C.g. of axis
wing section /

%

T

e Y
Position of— — —
static equilibrium

Section A-A

h this smalysis the fuselag~ is assumed to be rigid. Its motion IS
therefore represented by rigid-hily dispkcement and rotation.

For vibration of this system, the energies considered are the
bend5ng, ttist~, and kinetic energies of the wing semispan ad one-
half the kinetic energy of the fuselage= At maximum displacement of the

wing the sumof the st~ ener~ of bending and twisting is givenby
the well-known expression

. . _T –——
-— —.—— —-

..-

. ..-.’ ,.. .
. .

(1)
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The kLnetic ener~ of the wing as it passes through the equilibrium
position is given%y the equation (see a~endix A for derivation)

(2)

One-half the kln.eticenergy of the fuselage is given shihrly by the
expression (see appendti A for derivation)

(“ &+ Wy+1,,e2+1#V2=F )X=o (3)

It can be shown by geomet~ that the pi~ching sngle e and the rolling
angle @ are related to the amgle of twist of the wing at the root cross
section, the slope of the wing at the root, and the angle of sweep by the
following rekt.ions

I

,;

e (v COB A
)

-&IA=
X=o

.

(k)

(5)

,.

The conditions leading to these geometrical relations were pointed out
by Lawrence h reference 1.

...

,.

,,

. .

By the energy me{hod, expansions are chosen to represent the
deflection and twist of the wing. In accor&mce with a princfpb of
this method, which apparently is not very well lmown, the expansions
need only satisfy the geometrical boundary conditi~ of the problem.
The dynamical boundary conditions (sheer,nmment, torque) are auto-
maticall.ysatisfied in the minimization process. A brief account of
this feature is given in reference 2. .

Convenient expansions for-the deflection and twist.arethe following
equations:

,>

‘,

.——. — ... . . .—.———.._..,_ ________ ___ —.. —.-— -.—... . . . ._. _ _______ _-



y(x) = ~+zi&: +alyl+a2y2+. ..+~yn +.. . (6)

q(x) =%o+blql+ b2~+. ..lj& +.. . (7)

in which the coefficients an end ~ may

coordinates. The coefficients ~, ~, ad
the wtng to have a rigid-body deflection, a
and a rigid-body rotation. The yn’s and

torsional mod.os,respectively, of a uniform
terms of a unit tip deflection or unit tip rotation. Some of the reasons
for choos~ these modes will be discussed in the section entitled
‘!Discussionof Method.“ With the use of the e~ansions (6) ad (7) the
geometrical boundary conditions at the @ng root are detemnined solely
by the values of the coefficients ao, ao, and b.. (Yhe coefficient a.

be taken as generddzed

b. are included to allow

13nearly mrying deflmctIon,
~‘s are bendimg and

cantilever beam written in

deterdnes the wing root deflecti~, ‘~ dete=es the slope of the wing

at the root, and b. determines the angle of rotation of the wing root.)
The simplificationresulting from this method of dealing with root
bounbry conditions will be made evident in the section to follow.

Upon substitution of equations (4), (5), (6), d (7) tito
equations (1), (2), and (3), the energies U, VI, and V2 are expressed

tn terms of the unkmwn coefficients ~, ~ and the unlnown frequency a.

(The coefficients ~, ~o, and b. do tit appear in the expression

for U.)
.

For the case of a flexible fuselage, expmsions simikr to
equations (6) and (7) can be made for the deflection or twist of the
forward and rearwami sections of the fusel&e. These ~ions are then
used ‘withappro~riate energy terms siudlar to equations (1) sd (2).

BOUNDARY CONDITIOIiS

EQUATIONS OF
,

AND cHmwmEmsTIc

SwEE’rWING-S

Because of the structural syriunet~existing about the longitudinal

, axis of the fuselage, the structure vibrates in natural modes which can
be classed as either symmetrical or antisymmetrical about this axis.
For convenience, the boundary conditions defining each type of vibration
VI11 now be introduced.

For symmetrical
is that the fuselage

vibration, the boundery condition at the wing root
shall not roll, or

,. .—. — .—.—.____ ,__... . ‘—..-.
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.

# = ( )qein A+~cos A =
X=o

Use of equations (6) and (7) Tezmits this boundary
expressed.by the following shple rehation between

Elimination of ~

to the solution for

fYom VI and ‘T2 by means of

o (8)

condition to be
the coefficients ao

(9)

this relation leads

symetrlcal modes and frequencies.

For antisymetrical vilnation, the constraining relati&s at the
wing root ere that the deflection is zero smd that the fuselage sh.dl
not pitch, or

(Y)x+ = o (lo)

,
0

exld

e = ( )qcos A-~sti A =0 (U)
X4

BYuseof equtiu (6)and(7),the bounb conditions may %e written

ao=O (1!?)

i. =
=0&emA (13)

Substitution of these relations into the e~ressions for V1 ad V2

leads to the solution for antisymetrical modes and frequencies.

The characteristic equations for modes and frequencies of vibration
(syrmuetricaland antisym.etrical) cen be found ly Mnimizatim of the
expression V1 + V2 - U with respect to the unlmown coefficients ai

and bi. For exem@e, the equation obtained by minimization of the

energy expression with resyect to ~ is

—— --- —-—-————.. —— .—. ——— —-————— ---——
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%(%+W)+aMl+a2b2+oo .-

(+30 F~+--
)

IEO tan A + blFOl + k21?02+ . . . b@~ = O (14)
coB A

The sets of Hnesr homogeneous equations derived b this way are shown
In a somewhat condensed fomn for symmetrical and antisymmetricalvibra-
tion in tables I and II. The constants Ah, B~ C~ . . . shown in
these equations represent integrals which are defined In appendix B.
For any problem, the Mmit@j values of the subscripts n and m of
~ and ~ are chosen h accordance tith the nuder of modes being

represented @ the expansions. The exsm@s to be presented subsequmrlily
herein will serve aa a guide in tlxb choice. The next sectim w$ll show
that the equations which characterize coupled and uncoupled vibration of
an airplmme with unswept w5ngs may be obtained sim@y by crossing out
certain rows and coluamE in talileI or table II.

C~C EQUATIONS ~R

OF UNS&T WINGS

VIBRATIOM

The equations for vilrating unswept w@gs may ~e obtained directly
from talk% I md H s@iLy by letting the angle of sweep A equal
zero. The eqyations for the various types of vibration - coupled
bending end torsion, uncou@si lmding, and uncoupled torsion - maY
then he found as described in the following sections. In all these
cases it is understood that A = O.

Coupled Bending and Torsion

s-trical and antisynmetrical free-free vibration.- The equations
obtained for A = O describe symmetrical,end antisymetrical free-free
vibration of an unswept wing sad fuse-e. “

Vibraticm as a cadX1-ever.- The deflection, slope, and twist at the
wing root em zero smd therefore ~ = ~ = b. = O. The chamcteristic ,
equations for this type of vibratim may te found from table II by
crossing out the column headed by ~ and the row for x.

Uncoupled Bending Vibration

If wing twist and fuselage yitching are prevented, the twisting
comqonent Q is zero and consequently the &‘s must be zero● J-n

—— —.——- —.—.. —.—
,,,.
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.

tables I and II, therefore, the uppe> left-hand quadrant, which involves
- only the ~‘s, gives the equations for uncoupled bending vibration.

The seveml types of uncoupled bending vibna.ticmmay
out certain of the remainbg equations af3follows:

Symmetrical free-fhe ben~ .- For symmetrical
the slope at the root is zero and therefore ~ = O.

quadrant of table I yields the desired equations.

be found by dropping

free-free bending
The upper-left

Antisymmetrical free-free ben~ .- For antisymetrical free-free
bending the deflection at the root is zen, and therefore N = O ● When

A = O the upper-left qmdrent of table II yields the des~d equatims.

Cantilever ben~ .- For cantilever bending the’deflection and
slope at the root are zero and therefore ~ = ~ = O. The equations.
for this type of vibration may be found from the qper-left qua-t of
ta%le I by crossing out the column headed by a. and the row for ao=

Uncoupled Torsional Vibmtion

If wing deflecticm’and fuselage tmnslation sxw prevented, the
deflection component y is zero and conaeqyently the an’s must be

zem. In tables I and II, therefore, all the rows (equations)derived
from the dnimization of the ai’s and the colunm headed by an ‘S ~

be crossed out. The remaininn equations, the lower-right qzadrant,
then define uncoupled torsional vilration of a wing-fuselage system.

s& trical free-free toz%ion.- For symmetrical free-fYee torsion
all the equations ti the lower-right quadrant of table I are used
(A=O). .

Cantilever or antisyme trical free-free,torsion.- For cantilever or
antisymmetrical me-free torsion the twist at the root is zero and
therefore b. = O. The equations for this case are found in the lower-

right quaarmtof table II.

SOLUTIONOFCHXMCTZKL5CIC EQUATIONS

It has been shown that the equations characterizing various types
of wing vibration may te found in-a simple manner fram the general sets
of equations shown in tables I and IL’. A soluticm to a particular set
of eqyations consiats in determining values of m, ~ and & which

define the natural frequencies and modes.

Since the equations are homogeneous, values of ~ and ~ other

than zero w$ich satisfy the set of equations can be found only when the

. .. . . —-.—-—- .———.. ——. — ... ___ -.-— _-_ —___ . . . . . . .. . _. ___ _.___ . . .
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9

ddemdnant of the set of equations is zero. The determinant, which is
simply the Inacketed terms in ta%les I and II, contains the unknown
freqU.eRCy CDj the VkLIBS Of m which cause the detezndnsnt to be zero
are tb natural frequencies of viludxbm. h order to .determhe the mode
associated with a given natural frequency, one of the unhewn coeffi-
cients ~ or ~ is given an az%itrsry vahze (unity, for convenience).
Mathematical considem%im Mates that one of the equations cti now
be discarded, but it has been found best simply to add two of the equa-
tions together and then to solve the resulting set of nonhomogmeous
equations simultaneouslyto obtain the relative values of the other coef-
fic$lnts. 5 value of frequency used in the solution of these equations
is, of course, the frequency value which caused the determinant to be
zezn. With the coefficients lmown, the mode associated with the given
vaLue of frequency is obtained directly ~ equations (6)and(7).

The values of m satisfy@g the frequency detemninant may be found
bj several methods. Perhaps the simplest way to locate a f&equency root
is to evaluate the determinant for a nuuiberof trial values of m in
the expected vichdty of a natural frequemcy amd to plot a curve of ~
sgainst the value of the detemninant. h most cases, the value of a
giving a zero determinant can be obtained from the results of three or
four evaluation. The evaluations may be perfommd by the Crout methot
of solv5ng deteminants. (See referente 3.) The Crout method yields
solutions =pidly and provides for a runmn check which minimizes the
possibility of computational e~r. With the procedure Just Outlhedj
anY desired frequency root and mode can be found independently of the
other frequencies and nmdes.

WMWCATIOIT OF CONSTANIS

Before the characteristic equations for vibration of the wing can
be solved, the constants ~ Bti, Cti . . . appearing in these

equations snd defined in appendix B nnwt be determined tim the physical
properties of the wing. Appropriate nmnerical and graphical integration
procedures are lmown for the calculation of such integrals. b order to
use the procedures, it is necessary to how the physical properties m,

me, ~ EI, and GT at a number of represarba.tivestations ~ abng

the wing sad alEo the numerical values

~a ~(x) and their ke~vatives yn”

F’orconvenience, yn(x), yn “(x),~(x),

(have been conputed at ten stations ~

of the modal functions yn(x)

d %’ at these stations.

and ~’(x) (n=l,2, c.0~)

)= 0.1, 0.2, . . . 0.9, 1.0 and

are presented fi tables Ill and IV. The values at stations other than
those ld.stedin the tables may be detezmind from plotting the lmxlal

I
— ——~ — —-——,---
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functions aud reading off the

c~. . . are then found by

values of the modal functions

desired values.

multiplying the

at the ~ta.tions

The constants Ah Btij “

physical constants by the

@ tie wing and integ-
rating over the span. The rapidity with which the titegrations can be
~erfofid depends prtii@2y on the number of stations ~eded to
represent accurately the variation in physical ~royerties along the span
and on the integrationprocedure used.

ACCURACY OF RESUIU’S

Because of the structmal complexity of airplane wings, simplifying
assumptim must necessarily be made in any analytical wing-vibration
analysis. Discrepancies which have been olserved between conqyted modes
and frequencies and experbdmlly determined ones will therefore include
errors due to the assumptions made in the analytical solution and errors
due to the fact that the and.ytical solutim is usually derived %Y an ,
approximate method. b order that the magnitude of the latter type of
error might be investigated for the ~~ solution, a few idetized
numerical examples are p?esented for which exact solutions (based on the
same s~lifying assml@ions, see appendix C) cam also be made. A brief
description of the examples emi the results obtahed folkws.

Uncoupled free-free bending vibration.- A s~le test of the
convergence of the enerpy method for unifonn<antilever-besm mode
expansions is to calculate the bending modes of a free-free beam with
the use of only a few temns to represent the deflection. The followhg
deflection expamsia

Y = a. + alyl(x) + q2(d + ays (d (15)

leads to a soltiion for symmetrical free-free Dales represented by the
determinant h tabls T. The calcul@icm of the constants A+.. B~.. . . .

for this.case is shqilified

conqnztations for one of the

example

because a unifomn beam is be- =~d. The

mati diagonal temns
(% ‘~)ia ~ for

. . . . . .. ———..—— _____ .___— ___ __ ._ .. ___-,. _ ——...—. –—.—
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L
1’=

(clampedat the center Mne).

frequency

m~\

of the %emm as a cantilever

IJO
evaluated (see reference 4, p.
cantilever the tite~ equaM
a unit tip deflection. M9Hng
the factor fi leads to diagonal tezms of the fozm shown in table V.
The zeros appesr in the table because of the orthogonality of the modal
functions b this uniform learnexam@e.

336), and for bencthg modes of a unlform
L/4 if the modes ere given in temns of
use of this fact and dividing through by

The three lowest frequencies obtafned from the fourth-order deter-
minant are compared with the exact frequencies in the fo~ tible:

IRrecpency
symmetrical (radiam3/sec) 2ercent

modes clifference
&act Energy

1 5.60 5.60 0

2 30.25 30.26 0

3 74.50 v.46 4.0

When the a4y4 tezm was added to equation (15),a frequency of

~ ● 37 ra~ans per second (1.2 percent error) was obtained for the third
symmetricalmode. The modes calculated by the energy solution are com-
pared with the exact modes in figure 1. The solutions for both a
fourth-ofier and fifth-order determinant are sbmn for the third mode.

-———. -- —-——.— ..—._ _ —— -.. —.—-.—— —
,. -.. -,
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b order to calculate the antisymmetricalmodes of the same beam,

()~ inequation (15)iareplaced by ~ ~ which leads to the determi-

nant h table VI. The two lowedt frequencies calculated from this
determinant =e coqaz%d with the exact solution in the following table:

I&equency
&tis-trical . (radians/see) Percent

modes emor
Watt Wer~

1 15.42 15.42 0

2 y.o 50”7 1.4

A comparison of the derived modes with the exact modes is shown in
figure 2 ●

From these comparisons the energy solutions are seen to be in good
agreement with the exact solution for the fimt and second synmetricsl
nmdes with a fourth-order determinant and for the third mode with a
fifth-order detezmdnant (fig. 1). lor the first ad second antisym-
metrical modes (fig. 2) good agreement is found ~ a fourth-order
detendnan.t. b the symmetrical cases, the derived modes contain at
least one less nodal point than the highest uniform-cantilever-beammode
used in the deflection expansion smd for the antisymmetrical case, the
derived modes contain no more nodes than are contained in the uniform
cantilever modes. (Zero deflection at the root of a cantilever and at
the center he of an sntisymmtrical free-free beem is counted as a
node.) A simple and, in some cases, consemative rule of thunib,then,
that might be folJmwed to ensure adequate representation of a desired
mode contahing n nodes is to include h the expamions for deflection
all terms up to and ficluding the modal function which haa n + 1 nodes.
This rule should be applied separately to both the deflection and
rotation components of a mode in the case of coupled vibration.

Ma8s coupled vibration of a swept m and fuselage.- A few of the
natural frequencies of vibrations of the configuraticm shown in figure 3
have been detemdned by ‘boththe exact and energy methods. ‘I’heswept
wing is of constant cross section along the span and is mounted on an
inflexible fuselage. The parameters assumed are as follows:

. . —- ...-— -- —. .——— .. . . —..———. ... . . —.. — -—.—— _—...—_
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W* ~arameters:
Young’smoduluB of elasticity E, psi . . . . . . . . . .
SheUmodul.us G, psi..... . . . . . . . . . . . . .

Bend@ mmlentof hertia I,in.ches4 . . . . . ...*.

Torsion constmt Jjinches4. . . . . . . . . . . . . .

Mass of wing m, pOmN1-s0c0nd82/inches2 . . . . . . . . .

I?olarmoment of inertia In pound-seconds2 . . . . . . .
.

Fuselage parmmters:
one-halfof pitching polar mcnnentof inertia 1~,

polmd-seconds2-tihes . . . . . . . . . . . . . . . .
one-w of rolling polar?mument of hertia 1~,

pound-seconds2-bches . . . . . . . . .. . . . . . . .
Distance between mass center of fusebge end elastic axle

ofwlngat root ~j inches . . . . . . . . . . . . .

%
Ratio of fuselage mass towhg mass ~=~ . . . . . .

M),000,0C4)
4,000,000

. 800

. I-6oo

. 0.025

. ti

. 400,000

. 1o,ooo

.’ -70

● 3

An exact analysis of the vibration of this cmfiguration leads to two
frequmcy equations, one for symmetrical end one for antisymmetrical
modss. The titivation of these equations is given in appendix C.

The energy “Solutim for the symmetrical modes waa made by use of the
first four temns tiethe expansion for deflection (equation (6)) and the
first three tezms h the expmsion for twist (equation (7)). Since ~ is

elhhated in a solution for symmkrical modes, the resulting detezml-
nant, table VII, is of the strbh order.

Table WI has %een simp~fied in the msmner which has been previ-
ously described for tables V and VI. b addition, the zeros in the
~per-right and lower-left quadrants of this deteminsnt are present
because there is no mass coupling along the wing.

The thee lowest frequencies satisfying the determinant are c~area
with the exact frequencies h the followhg table:

l&equency
Symmetrical (Cps) Percent

moles clifference
Ehct lher~

1 8.65 8.65 0

2 25.1 25.1 0

3 51.4 51.2 0.4

.— .— ,.. .—._—— ..— _
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The modes associated with the frequencies obtained in the energy solu-
tion are presented in figures 4, 5, and 6. For the third mode the rule
of tlnmibpresented previoud-y is not complied with wholly. The per-
centage error h frequency, however, is rather small lut, h order to
ensure that the modal deflection is represented accurately, one addl-
tiond term should probably be imcluded in the expsmsion for deflection.

In order to check the derivation of the antisymetrical frequency
equations the lowest antisyzmetrical-modefrequency was found from the
fourth-order detexmdnant shown in table ~. The vdlle Was 14.66 CyC1-eS
per second which is aJEo the exact valw. The associated md.e oltatid
from the ener~ solution is presented ti figure 7.

DISCUSSION OF METHOD

As shown by the numerical examples, applicatfau of the ener~
method to vibration problems leads to results which comsre favorably
with known exact solutions. Accuracy of results alone, however, would
not justify use of the method in a given problem unless the desire%
accuracy of frequencies and modes can be obtahed with a reasonable
smount of labor. Although no attempt is made to compare the labor
required to compute modes and frequencies by the ener~ method with that
reqpired by other procedures, the followhg facts about the ener~
method and the Crout solutions are presented.for considemtion:

(1) The n@er of terms taken in the expansions for deflection and
rotation determines the number of coordinates in the solution and hence
the order of the determinants used. The nmerical emmples have shown
that solutions for relatively colqdicated tyyes of whg vibration can
be obtained from low-order determinants, which is desimble from con-
Sia.emtion of computing time ● (Prelhinary tivestigationshave shown
that a number of the coupled modes of the airplane considering the
fuselage elastic can be obtained from an eighth-order deterntlnant● )
Since each mode and frequency is obtained h a msmner independent of

# other modes and without recourse to an ofihogotity condition, the
modes may be caputed in my desired sequence snd with varying order
dete?mlnants, the order depending on the n@er of terms needed to give
the particular mode to the desired accuracy.

(2) For a given maEs and stiffness variation along the wing, rmst
of the constants ~, Bti, Cti, ● ● ● for the wing are used in the

solutions for both symmetrical and antisymetrical vibration. Thus a
given set of equations for symmetrical vibration can be used for
computing the antisymmetricalmodes after only a few new constsnts have
been computed.

(3)
Wingj of

..—

The effect of adiMng to or subtracting from the mass on the
considering ehticaJ2y mounted nmtors, or of considering an

—.. . -———.. .— . . .. . ._. _ __.._—. .
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elastic fuselage is easily introduced tito the ene~ solution. (See
appendix D for the method of introducing spring nmuntings.)

(4) The Crout method @as been found to he a highly efficient way
to solve the characteristic-valueequations derived from the energy
approach. The characteristicvalues, or natural frequencies, are “
quicldy located by a few trial and error evaluations of the detemninant
of the homogeneous equations with assumed values of m h the vic~ty
of a ~tti fre~ue~yj and the unktmwn coefficients defimlng the mwles
are then found by a straightforwardcalculation.

The eqmnsions for deflection and twist have been made h terms of
uniform-csntilever-mode functions for seveti reasms. Other functions
could have been used. I?orexsmpb, yower-series e~snsions for both
deflection and twist have been used for the problem considered in this
yaper. These expansion work well, are simple amd convenient, but may
tivolve computational difficultieswhich sre not present when cantilever
functions are used. The off-disgonal texms in the determinant for the
lower-series solution are usually larger them the diagonsl elements.
Small differences of large numbers result h the evaluation of the
detez@nant so that the co~utations must be carried to a large nuniber
of significant figures in order to avoid errors. when Unifom Csnti-
lever functions are used, however, there is in most problems a
rese?ilibncebetween each cantilever function and one of the modes being
derived. The functions therefore have a tendency to be orthogonal
(since they are orthogonal when the structure is unifomn) with the
consequence that the off-diagonal terms of the detemdnant are ti in
co~arison with the diagonal temns. Evaluation can therefore be made
ea8ily without the use of a large nuniberof si@ficant figures. The
-les presented h this yayer were computed with the use of four or
five significant figmes.

COITCUJSIONS

A solution is pesented. for the determination of the coupled and
uncou@ed modes and frequencies of wings (swept or unswept) mounted on
a fuselage. Characteristic equations descrilhg symmetrical end anti-
symmetrical modes of vibratim are derived by an energy method which
makes use of the natural modes of a uniform cantilever beam. 5 use
of these modes and the principle that only the geometrical boundkry
conditions need to be satisfied when a solution is made results in a
direct procedure with a considera%l.esav~ h work. The method points
out that the dynamical boundary conditions, such as shear and moment,
are automatically satisfied when this principle is used.

—— ..-— . . .. .. . . -—— . - —— ——
..’.
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The appldcatia of the characteristic equatims to various &pes
wing vibrations is illustrated 3Y numerical examples. The n~ric~

17

of

tiles C~S~ Wm susceptible-to exact soluti-m * show that accurate
IQOd.eSend frequencies can be obtained m low-order ~te~ts.

WY Aercmautical Id)oratoly
Natimal Adviso~ Camnittee for Aercmautics

Langby Held, Tao, August 30, 1*

——————— .—— — —.. . ._ .—— —. -
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IIERIVATIONOF EXPRESSIONS lK)RKINEI’ICINERGY

h the ener~ solution used herein, the potential energy stored in
the wingat meximum dkplacement and the kinetic ene~ of the wing-
fuselage system in Qassing through the equilibriumyosition must le
lalown. She the equations for potential energy of benddng and twist
are we~ known (f3ee,for exmnple, reference 4), the present appendix is
cOti~a to a derivation of the Mnetic -energy expression.

h figure8,a cross section of t~ ~ is shown at th ~tant
that it Passes the e@.lilmium ~OSitiOIlj the elastic axis is ~t3~a to
have a vertical vekcity v, ti the cross sectim is assumed to be
rotating at an &uJar velocity 0. Any element of mass am having the .
Coordinates (r,e) can be shown to have a total velocity such that

*.(v+s-lr cose)*+f?r%n*eVt (Al)

L am +The kinetic energy of the element will be * Ifyaldq are’

the maximum values of deflection and twist, the velocity v and rota-
tional velcoity” S2 may he shown to be equal to my snd u’??respec- “
tively. Substitution of these values h the expression for total ~
velocity and inte~tim of the Hnetic energy of all the ele?m%ts over
the cross section gives for the totel lclneticenergy of unit length of
the wing at.the cross section under consideration

where e is the distance between the elastic axis and the center of
gravity (e is ~ositive when cqnter of gravity is forward of the
elastic axis) of the cross section and k is the radius of gyratim
of ths cross section abut the elastic axis. Integration of the ldnetic
ener~ over the length of the ~ gives for the total kinetic ener~ of
the wing .

[

L

&vl=~ m(& + 2eyq + I&&) dx

o

(A2)

I
—. —-—— .._— _ —. —.—.

.’
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for the Hnetic ener~ of vertical and pitchfng
motion of the fuselage can be found by applying equation (A2) to the
fuselage mass. The angle q, however, is replaced by the pitching angle

of the fuselage given by (q cos A Q-T sin A) . If 13 is usedto
*\

denote the pitcldllgx, the
motion of the fuselage is

UA /~~

kinetic energy of vertical and pitc~

or

The kinetic ener~ of the &elage h rolldng nmtim

where Q isthe angle of roll of the ftiselage given

is

by

( )q6in A+~co8A . The total Hnetic energy of tl?efuselage is
X=O

then 4

(A3)

inwhich y, (3,and O are understood to be the msxlmum valwa of those
quantities.

.
— . . ...— —.....—. _. .—>-— . ..— ——— —.— ------ _— _____
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AWENDIXB

DEKUWTIOIV OF CONSCANTS IN C~c IZ!QUATIWS

The constsnts Ah B~, C~ . . . found in the equations of

tables I and II re~resent intez for which the
perfozmed from the center Mm of the fuselage or
the whlg tiy ● The integmtions are as indicated:

—

LJo

[

L

%= “m ;yndx

o

PL

integrations are
root of the w3ng

__. — . .,-- .—— — ——. —-
,.. ,

to
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JmEmDIxc

IIEKIVATIOiiO?lFREQUENCY EQUATIONS

OF SWEH’ WllKS

a

An exact solution for frequmcies and modes of vibration of sweyt
wings can readily be made * for an idaiklxed structure representing
the sweptback-wingairplane. Such a conf@uration is shown in figure 3.
The deflection d twist of the wirqy3are assumed to confomn to elemen-
tary engheerimg beam theory. The motion of the wings can then be
derived by a particular solutia to the following famillar differential
equations

The geneti solutions are

Y =Clslnh px+cpcoshpx+ c381npx+c4cospx

T= C5 Sfi qX + C6 C08 qX

where

(cl)

(C2)

(C3)

(C4)

(C5)

\

(c6)

-— —. . . . . . . . . . . . _+_ . .. .. .___ —.—.—.. ,- _..._ -_ ______ .,---- __ _



22 NACA ~ NO. 1747

Values for the six unlmown canstsnts in equations (C3) and (C4) must be
determined”from the lmown boundary conditions at
wing. At the wing tip, the followlng conditions

Wtlenthe W131.gis
at the root nmst

d% d3y Q=o

G=z=ax

vibrating in Sptrical modes,
also be true:

the root snd tip of the
exist:

(C7)

the followtng ccmditiona
t

(Q )~cos A+q Min A .=0
X=o .

[
-EI

d3y

(
—+%y-e~
~3 j

sin A+eQ coBA =0

X=o

1

J+U.?Jqqly =0 “

X=o

(c8)

(C9)

ax /

bounbr.y-condition

(Clo)

Substitution of equati~- (C3) and (C4) tito the six
eqwtions leads to SIX homogeneous equations in terms of the-udmown
coefficients Cl, C2, . . . and the unhewn frequency m. Since valuea

of cl, C2, ● ● ● other than zero which satisfy the set of equations

can %e found only when the deterndnant of the set of equations is zero,~
the natural freqummles of vibration are found as those values of m
tich cause the detezmdnant to be zero. llrpanEiauof the detemdnant of
the set of equations leads to a SiI@EI equthn containing the ur&mwn
frequency m: This fk’equencyequation can le stmyli.fiedto the form

. . . —.—- .—. — ,,
,-, ---

I
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~ -(831FP
+ ~ GJ co~2A——

)[
t~ e2N (c08 e sbh e + 5b e cOsh e)

d Sinll lZIsin A

1 2e2-
‘(l+c0t3e00f3he) -=aef3me .+—
IIiL

2

()

e2m
+— .-&---(l+cOse cOshe)+~sti A(c0s esbhe

I&’.

-fltiecOsh e)-sti A(l - c0~ec08h @=0 (Cll)

(m.2)

.

(C13)

,
Therefore

The roots e to eqyation (CU.) define the frequencies of the nhzcal
s_JDmetricalmodes of vibratim of the swept-wing confi~atio~ ● For
the parameters given in the secticm entitled “Mass coupled vibratiti

~ of a swept wing and @selage ~“ the first three roots to this equatim
are

-. ..7-... .— —.— ——-— ..._— — .—— —- .. .. .
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61 =1.*9

e2= 3.336

83=4.v2

h order to derive the frequency equation for the entisymmetrical
modes of vibration, the born- co&it&s defining antisyninetrical
tibration must be satisfied. b addition to the boundary conditions
given ly equation (C7), the follcnnbg conditions must be true:

b)= = o (C15)

.

[5IIId @ fi~COSA+GJ-S
C12+-dx

(c16)

(C17)

.

Use of the conditions given in equtions (c7), (C15), (c16), and
(C17) fields as the frequency equatian for antisymnetricalmodes

+COSA (stiecOshe -c0sef3we)=o (c18)

&

..—. .—— —..—— —-. .—
,“



NACA TN No. 1747 25

For the_parameters given in the secticm entitled “Mass coupled vibration
of a swept wing and fuselage,” the first three roots to this equation are

e~ = 2.551

82 . 3A-62

e3 = 4.79

.

. . . ..— —._ ..___ . ..-. _____ . .. . .._______ __ _ -–——. ... --..-..—_ .. . . .



26 NACATN NO. 1747

THE EFFECT OF ASX’KCNGSUSEENSIOR

AND M)IllHOF AIIU?G(SWEPIOR

D

ON TRk NATURAL FREQUENC~

UNSwEPr)m FEELAGE

I&equencies and modes of aiz@ane wings ‘&e often determined experi-
mentally with the atrplane suspended at the center of gravity by a linear
spring. An evaluation of the changes h vitmation characteristics
(symmetricalmodes only are tiected) of the airplane due to the spring
suspension can easily be made by the energy method. The potential energy
stored In the spzlmg is given by

(Dl)

With the expansim used for y and q, equation (Dl) reduces simply to

‘“=:”(*+-y (m)

If Va is added to the energies U, Vb and V2, and the expression

u+va-vl - V2 is mindmized with respect to the coefficients a.

and bo, tha follming equ.atiotiare derived:

t
Ct8a )E hl?in=o

(# COS”A + n~
(i = o)

.

(D3)

—— —-.. . ..— . ..— ,-
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.
For bo, -

(~FiO +w— -LHita A-
coa A *)+&P~ -~’mA)

( %?+lo Iw+L%a2A+- -~tan A- ‘=2
COB2A )u? COE2A

t

+ x%( )C~-~tanA =0 (i = o) (y)

n=l

These two equations re@ace rows for ao and b. in table I when the

natural vibration is restraimd by a Mnear spring at the center of
gravity of the airplane.

-- —..— . . . —. —._ _. . .. ..,..-—.. ______ _____ .. ____ _____
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TABLE III.- EEKORV3 MOB OF A UItCE’ORM

~
L
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.4
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0
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TABLE V.- EQUATIONS FOR SYM@TRICAL FRE13-l?REE—BEAMEKAMH2Z

43 al. %2

() p12
&l -_
4 u?

o

0

() *22
Ll-—
4 &

0

a3

/

L
~
L

y3 ax

o

0

or

()

*32
Al-—
4 &

.

33

2 =12.36PI ~22 . l@5.5 P32 = 3&)7.o
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%)

0

0

a3

P

L
&
L

fy3dx

o

0

0

()

2
L1-PL
4 &
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35

(seetabbsTadVI f0rmlne3af0t karint-2grd8.) =s=
—----- __. A.— — _ —— . . . .. —._ . . . . .. Z.— — .. . _____ ——.——.



0 0

fIL

q,2 . Q2QQf!i
4

A = 45°
IJ
4

(See talks VI and VZI for values of in@p@E. ~
-=%s=5

—



NACA l!NNoO 1747 37

1.0

I
—Exact
o Calculated (kth-or~er
❑ Calculated (Sth-order

95

determinant)

o ‘ I I I I 1

.2 .8 LO

-a (a) First mode.

1.0 –

(

●5 -

0 I I I I t I I I

.2

-. 5-

t (b) Second mode.

(c) Third mode.

Figure l.- Symmetrical modes of uniform free-free
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(b) Second mode.

Figure 2.- Antisymmetrlcal modes of uniform free-free beam.
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u

.

Figure 3.- Example swept-wing airplane.
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Figure 4.- First symmetrical mode of example swept wing.
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Figure 5.- Second symmetrical mode of example swept wing.
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Figure 6.- Third symmetrical mode of example swept wing.
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Figure 7.- First antisynmetrical‘mode of example swept wing.
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. .

Elasttc axis

Figure 8.- Coordinate and velocity notation for
element of mass on cross section.
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